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ABSTRACT: Substantial equivalence is a key concept in the evaluation of unintended and potentially harmful metabolic impact
consequent to a genetic modification of food. The application of unsupervised multivariate data analysis to the metabolic profiles is
expected to improve the effectiveness of such evaluation. The present study uses NMR spectra of hydroalcoholic extracts, as holistic
representations of the metabolic profiles of grapes, to evaluate the effect of the insertion of one or three copies of the DefH9-iaaM
construct in plants of Silcora and Thompson Seedless cultivars. The comparison of the metabolic profiles of transgenic derivatives
with respect to their corresponding natural lines pointed out that the overall metabolic changes occur in the same direction,
independent of the host genotype, although the two cultivars are modified to different extents. A higher number of copies not only
produces a larger effect but also modifies the whole pattern of perturbed metabolites.
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’ INTRODUCTION

Substantial equivalence between a transgenic food and its
wild-type genotype, adopted by European Union and United
States regulators in food safety assessment, is a concept aiming at
demonstrating similarity and, therefore, safety, mainly through
tests of physicochemical composition.1

However, much criticism was addressed to the concept of
substantial equivalence between transgenic and natural foods: it
emphasizes chemical composition at the expense of biological,
toxicological, and immunological tests; it does not define the
point at which a food is no longer substantially equivalent; and
the concept actually impedes risk research.2

Presently, substantial equivalence is still considered a key step
in the safety assessment process of transgenic foods, and it is not a
safety assessment in itself.

When a transgenic food is compared with the conventional
counterpart, “if the differences exceed natural variations, a nutritional
and toxicological assessment is required for the transgenic food”.3

Several strategies have been developed to identify differences in
the composition of genticallymodified (GM) food crops thatmay
occur as a result of the genetic modification process.4 These
include profiling methods. Three main cell constituent groups
are targeted by profiling technologies: RNA (microarray techno-
logies), proteins (proteomics), and metabolites (metabono-
mics). Microarray technologies are feasible to monitor the
expression of thousands of different genes simultaneously. For
instance, expressionmicroarray analyses were used tomonitor the
extension of unexpected transcriptome modifications obtained
in rice by conventional plant breeding as compared with the ones
obtained through genetic engineering.5

Proteomics is the large-scale study of a proteome, which is
the entire complement of proteins, including the modifica-
tions made to a particular set of proteins, produced by an
organism or system. Because proteins are direct products of
gene transcription and translation, they are ideally suited for the
detection of changes in the genome (e.g., insertional mutation),
in gene regulation (pleiotropic effect), or in biochemical path-
ways (direct or pleiotropic effect) of a genetically modified
plant.6

Metabonomics can be expressed as “the quantitative measure-
ment of the dynamic multi-parametric metabolic response of
living systems to patho-physiological stimuli or genetic variations
and/or modifications”.7 However, a metabonomic study can
provide significant information only if the metabolic change in
the target group is significantly different from the biological
variation of the control group.8 In other words, metabonomics
cannot provide any information when differences between
groups are not meaningful, whereas it gives also a quantitative
measure of the differences when detected.

Different applications of the metabonomic approach have
been documented, especially in toxicity screening,9 drug meta-
bolism,10 and functional genomics.11 This kind of approach,
nowadays, finds increasing development also in nutritional science
(nutrigenomic approach),12�18 food chemistry,19�23 and plant
genetic engineering technology.24
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Different analytical platforms have been employed to investi-
gate metabolite profiles such as magnetic resonance (NMR) and
mass spectrometry (MS). In particular, the NMR technique
has the advantage of being less affected thanMS by matrix effects
and of providing at least one signal for each molecule, present
in the mixture at a detectable concentration, and for this
reason it is often indicated as the truly quantitative universal
detector.25�27

The spectroscopic data are then explored by chemometric
techniques, such as the unsupervised principal component
analysis (PCA), to simplify and condense in a few parametric
descriptors the global information given by the spectra that
describe the whole chemical composition. Other supervised
multivariate statistical analysis have been also developed (LDA,
PLS-DA, ECVA, iECVA),28�30 but they are mainly directed
to highlight, within a complex mixture, those biomarkers
indicating a clear difference among categories of samples. How-
ever, these supervised methodologies require a suitable number
of samples to have a reliable predictive capability not affected by
overfitting.31,32

Genes, increasing either auxin synthesis or sensitivity and
altering auxin signal transduction, allow fruit set in the absence of
pollination (parthenocarpy).33�40 Thus, auxin might improve
fruit set and consequently fruit number per plant. In perennial
species, auxin also affects development of inflorescence. This is
indicated by the increased number of inflorescences on raspberry
and strawberry plants genetically engineered with an ovule-
specific auxin-synthesizing gene, DefH9-iaaM.38 This gene con-
struct contains an ovule-specific regulatory region from DefH9
isolated from Antirrhinum majus and the iaaM coding region
from Pseudomonas savastonoi. The iaaM gene codes for a
tryptophan-2-monoxygenase enzyme that converts tryptophan
to indole-3-acetamide, which is then hydrolyzed to the auxin
indoleacetic acid (IAA).33

DefH9-iaaM was introduced into the genome of two grape
cultivars with different levels of fecundity mainly due to different
average number of inflorescences per shoot.41

In Thompson Seedless cultivar the DefH9-iaaM gene doubles
the average number of inflorescences per shoot, whereas shoot
fruitfulness was unaffected in transgenic Silcora. Both transgenic
cultivars had an increased number of berries per bunch, but more
in Thompson Seedless (30%) in comparison with Silcora (15%).
Berries of the transgenic cultivars had shown a substantial
equivalent nutritional quality when analyzed by conventional
techniques.42

With the aim to approach the food safety risk assessment of
the new DefH9-iaaM table grape lines, the present paper
proposes an analytical methodology, based on NMR spec-
troscopy, aimed at comparing and measuring the overall
difference in the chemical composition of table grapes with
respect to their transgenic derivative. Our approach statisti-
cally evaluates the metabolic profile of grapes, as determined
on their hydroalcoholic extracts, and exploits the principles
of metabonomics to analyze the changes induced by genetic
modifications. Rather than focusing on a number of metabo-
lites, the presented approach compares the compositional
variability of grapes by representing it as patterns of spectral
bins, each including compounds with similar chemical
functionalities.

This paper represents the first application of metabonomics
methods to the evaluation of the overall modifications occurring
in the metabolic profiles of transgenic grapes.

’MATERIALS AND METHODS

Plant Material. The DefH9-iaaM gene construct consists of the
ovule-specific regulatory region fromDefH9 isolated by A. majus and the
iaaM coding region from P. savastonoi iaaM coding for a tryptophan-2-
monoxygenase enzyme that converts tryptophan to indole-3-acetamide.
The latter is then hydrolyzed to IAA.33 The DefH9-iaaM gene was
introduced into the genome of two grape cultivars, that is, cv. Thompson
Seedless, with low shoot fruitfulness, and cv. Silcora, with high shoot
fruitfulness.43 Transgenic DefH9-iaaM lines of both cultivars have been
cultivated (1999�2006) under open-field conditions to compare their
fecundity to that of control nontransgenic plants. The open-field
experimental trial with transgenic and control clones was established
at the Experimental Farm of the Marche Polytechnic University in
March 2001, by following the EC (CE 2001/18) rules for transgenic
plant field evaluation. All plants, both transgenic and wild type, were
cultivated in the same vineyards according to identical agronomic
practices. Field trial was set including four plots of four plants of each
clone (control and transgenic lines).
Experimental Design for NMR Study. Forty-five NMR samples

were prepared from the extracts of the two cultivars and their modified
lines. At the 2007 harvest, berries of Thompson Seedless control line
(T-WT) and one copy of the DefH9-iaaM gene line (T-GM1) were
sampled. At the same time berries of Silcora from control line plants
(S-WT) and from two DefH9-iaaM modified lines, one containing a
single copy of the gene (S-GM1) and the other containing three copies
of it (S-GM2), were also sampled.42 At harvest, samples were freeze-
dried at �80 �C and then shipped in dry ice to the laboratory for
analyses.
Sample Preparation. For each genotype (control and transgenic

lines of both cultivars) was prepared a bulk of 100 berries picked
randomly from grape clusters of plants growing in different plots of the
experimental vineyards. Both skin and pulp of each sample were
homogenized under ice chilling using an Ultra Turrax T18 basic
dispersing tool (IKA). Three aliquots of about 10.0 g of homogenate,
poured in 50 mL Falcon tubes, were separately vortexed with 10.0 mL
of a mixture of methanol and 50 mM acetate buffer (pH 5.0, 2:1) to
perform the solvent extraction. The suspensions were centrifuged at
10600g for 20 min at 4 �C. The resulting hydroalcoholic solution was
dispensed in different Eppendorf tubes, as 1 mL aliquots, and stored at
�80 �C. Before the free induction decay (FID) acquisition, 10% (v/v)
D2O was added to each 1 mL extract and centrifuged at 20800g for
5 min at room temperature. A volume of 800 μL was transferred to a
5 mm NMR tube to acquire a single FID. Three extracts (E1�3) for
each homogenate (H1�3) obtained from all genotypes (G1�5) were
subjected to NMR analysis by alternating samples so that the five
extracts E1:H1:G1�5 were first analyzed, followed by the series E1:H2:
G1�5. When the last series, E3:H3:G1�5, was analyzed, in total 45
spectra were acquired. With this sampling scheme, the accuracy and
precision of the instrumental analysis, as well as the storage effects, were
assessed.
NMR Spectroscopy. The 1HNMR spectra were recorded at 300 K

on a Varian Mercury-plus spectrometer, operating at a 1H frequency of
400 MHz; for each spectrum, 2048 scans were acquired, with data
collected into 16K data points with a spectral width of 16 ppm, a pulse
angle of 60�, a recycle delay of 1.0 s, and an acquisition time of 2.561 s.
The water and methanol singlets were suppressed using the WET
presaturation sequence, with irradiation at the water and methanol
frequencies. Methanol satellites were suppressed by irradiation on the
13C frequency of the solvent. The data were acquired under an automatic
procedure, requiring about 2 h per sample. The FID were Fourier
transformed, with Mestrelab software, by performing an exponential
multiplication with a 1 Hz line broadening. The glucose’s β-anomeric
signal at 4.67 ppm was taken as chemical shift reference for all spectra.
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Phase and multipoint manual baseline corrections were performed in
duplicate for each FID to evaluate the errors due to the processing steps.
Spectral data points were reduced from 16K (16384) to 8000 points, by
deleting the edge parts of the spectra containing any signal above the
noise and by cutting off the solvent and buffer signals (water, methanol,
and acetic acid). The spectral information was further condensed by
subdividing the spectra into 80 bins, each integrating 100 data points.
The resulting binned spectra were saved as an ASCII file for the
subsequent statistical analysis.
Prestatistical Processing of NMR Data. Strong resonances

assigned to residual water (4.908 ppm), methanol (3.396 ppm), and
acetic acid (2.107 ppm) are easily identified and excluded from the
subsequent chemometric analysis. Although acetic acid is a grape meta-
bolite, it has been excluded from the statistical analysis because it is
component of the buffer system, necessary to keep the pH at the chosen
value. Among several hundred signals belonging to grape’s metabolites,
themost intense ones arise from glucose in themidfield region (R-Glu-H1

at 5.252 ppm, β-Glu-H1 at 4.64 ppm, and H2�H6 in the range 3.5�4.20
ppm). Signals falling in the upfield region (<3.0 ppm) and in the
downfield region (>5.49 ppm) were expanded on the vertical scale
(�20 and �400, respectively) to visually appreciate signals belonging
to minority species (Figure 1).

Prior to multivariate analysis, data underwent prestatistical improve-
ment, such as normalization, aiming at minimizing unwanted sources of
variation due to slightly different instrumental conditions and sample
preparation artifacts. Moreover, the signals belonging to some titrable
organic acids still show some variations of their chemical shift among
different spectra, due to small differences (<0.05 unit) in the pH of the
extracts being analyzed. To avoid such a detrimental effect, the spectral data
were binned, thus converting each spectrum in a collection of 80 bins, each
consisting of the integral area over 100 consecutive spectral data points.44

Multivariate Data Analysis. Themultivariate analysis was carried
out onto mean-centered and scaled binned spectra through PCA by
using homemade algorithms written in the R 2.4.0 program language.
PCA has been chosen as the “gold standard” for comparison, because it is
an unsupervised method able to describe the total sample variance by
projecting it in a condensed space.45 Analysis of variance (ANOVA) was
applied to the first 20 PCs, all together collecting 90% of the total
variance, to find those PCs able to discriminate between GM and WT
grapes, at a statistical p level of <10�3.

Student's t test was carried out on PC1 and PC2 scores to test
the statistical significance of the null hypothesis between WT and GM
grapes (Table 1).

The line commands, in the R program environment, used for
ANOVA and Student's t test are anova and t.test, respectively. Because
the present study is aimed at evaluating the metabolic impact of the
genetic modification and not the difference between the metabolic
profiles of two cultivars, we first performed separately the PCA on two
subsets of the NMR spectra acquired for the Silcora seedless cultivar
(S-WT, S-GM1, and S-GM2) and Thompson Seedless cultivar (T-WT
and T-GM1). A separate PCA for the two cultivars is required according
to the principles of “metabonomics”.46,47 The differences in metabolic
profile of two cultivars may be too pronounced to be summarized in
a couple of parameters such as PC1 and PC2. Instead, it is correct to
describe the differences between the experimental group and a control
group by using PC scores.

’RESULTS AND DISCUSSION

PCA of the Silcora Cultivar and Transgenic Line Subset.
The application of the PCA on the Silcora subset results in the
PC plot shown in Figure 2A, where the first principal component
(PC1) describes 25% and the second one (PC2) 13% of the total
subset variance. Although only 38% of the total variance is

Figure 1. 1H NMR spectrum of hydroalcoholic extract of grape (Vitis
vinifera). The spectrum was subdivided into three spectral regions (A,
downfield; B, midfield; and C, upfield region). Downfield and upfield
regions were expanded on the vertical scale to appreciate the presence
of small signals. Some signals, easily assigned, are labeled: 1,R-D-glucose;
2, residual water; 3, β-D-glucose; 4, residual methanol; 5, acetic acid
belonging to the extraction buffer system.

Table 1. Summary of Student's t Test for PC1 and PC2
Applied to Silcora and Thompson Subsetsa

PC cultivar |t| df p value

1 Silcora (WT vs GM1) 4.19 34 1.8� 10�4

Silcora (WT vs GM2) 24.16 34 2.2� 10�16

2 Silcora (WT vs GM1) 10.59 34 2.6� 10�12

Silcora (WT vs GM2) 3.35 34 1.9� 10�3

1 Thompson (WT vs GM) 4.6804 34 4.4� 10�5

2 Thompson (WT vs GM) 0.6228 34 5.4� 10�1

a |t| is the absolute t value observed in the statistical analysis; df is degrees
of freedom.
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explained by using only the first two PCs, the application of the
ANOVA test to the first 20 PCs (explaining 90% of the total
variance) pointed out that only the first two PCs were markedly
capable of discriminating between GM and WT, at the 10�16

p level. This means that all the other following PCs contain

information about the variance among samples, regardless of
whether they are GM or WT.
As seen from a visual inspection of the PC plot, the variance

among the GM and WT grapes is higher than the variance
internal to each group. Moreover, the direction of separation
between S-GM1 and S-WT is different (mainly along PC1) from
the one along which S-GM2 is separated from S-WT (mainly
PC2). This result is mainly interpreted by assuming that the
spectral features responsible for the differentiation of the S-GM1
group from its nontransgenic clone are different from the ones
differentiating S-GM2. Further details arise from the inspection
of the PC loadings of the most meaningful components.
In Figure 2, panels B and C, the loadings of PC1 and PC2,
respectively, are shown, because they represent the only compo-
nents exhibiting higher intergroup than intragroup variance. The
loadings report the weight with which each bin influences the
position of the sample within the PC plot.48 For instance,
increasing areas of the bins in the black group labeled 1 and 3,
in panel B, push the sample score toward higher values of PC1.
The opposite occurs with black group labeled 2, that is, lower
values of PC1 corresponding to increasing areas. Similarly, the
increasing area of the black bins labeled 4 in panel C increases the
PC2 score. It is worth noting that the source of variation is not
confined to a few bins and, thus, signals of a few molecules.
Rather, the entire plantmetabolite profile is subjected to changes.
The absolute extent of such changes is, however, not directly
interpretable from the analysis of PC loadings.
To understand the extent of changes in the amount of

metabolites, the absolute areas of the black bin group labeled
in Figure 2 (panels B and C) is reported in Figure 3. The area of

Figure 2. Silcora sample multivariate analysis. (A) Score plot obtained
by application of PCA on mean-centered and scaled spectral bins
recorded on berry extracts of the Silcora cultivar. The first two PCs
explain 25% (PC1) and 13% (PC2), respectively, of the total variance.
(B, C) Loading plots for spectral bins, along PC1 and PC2, respectively.
The black bins labeled with numbers are described in the text as
representative of meaningful bins responsible of separation along the
respective PC dimension.

Figure 3. Bar plots representing the areas obtained by integrations of bin
groups 1�4, here labeled according to loading plots shown in Figure 2B,
C. Standard errors are also shown as black lines on the top of each bar.
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bin group 1 (including signals from aromatic substances49 is
clearly smaller in S-GM2 than in the other two genotypes of the
same cultivar (S-WT and S-GM1). The same genotype, however,
has a higher amount of other aromatic compounds, grouped in
black bins labeled 2, compared with S-WT and S-GM1. This
result justifies the decision, previously taken, to exclude the
S-GM2 line from the complete field evaluation because of a
nonhomogeneous phenotypic variability.42

A different trend is observed for black bins labeled 3, including
signals from organic acids,49 because their area decreases in the
first variant (S-GM1) and even more in the second variant
(S-GM2) with respect to that measured for S-WT. Data from
S-GM1 confirm results from previous studies based on conven-
tional chemical analysis.42 The black bins labeled 4 in Figure 2C,
including signals from the midfield spectra region, are involved
in the separation along PC2. This bin, indeed, has a slightly
higher area in the first variant S-GM1 than in the other genotypes
and collects signals belonging to sugars. A further step in the
chemometric analysis of the effect induced by genetic modifica-
tion of grape berries is represented by the statistical description of
the discrimination ability covered by each PC dimension.50�52

The result of Student's t test, applied on the PC1 and PC2 scores
of all variants, with respect to the WT genotype, is reported
in Table 1. The p value represents the probability of its being
correct to assume that the two compared populations are
equivalent on the basis of their PC score.53 For the Silcora
cultivar, it emerges that the two genetically modified variants are
both statistically different from the wild-type genotype, at least
along one dimension of the PC space, precisely PC1 for S-GM2
and PC2 for S-GM1. Because the latter represents a large portion
of the total variance attached to the metabolic profile described
by the NMR spectrum, such a result provides evidence that a
different copy number of the inserted gene induces different
phenotypic changes related to the multiparametric metabolic
response. These results confirm that the type and extent of the
metabolic modifications occurring in transgenic plants depend
on the number of copies of the inserted gene, so that it is of great
importance to identify transgenic lines with the lowest number of
inserted gene copies.54,55

For this reason, only S-GM1, between the two Silcora
transgenic lines, was considered for more detailed field studies.42

PCA of the Thompson Cultivar Subset and Its Transgenic
Line. The PCA approach was also applied to the Thompson
cultivar subset, and the results can be summarized through the
corresponding PC plot shown in Figure 4A.
The first consideration arises from the fact that only 27% of the

total variance is described by the first two principal components,
whereas up to 38%was obtained from the same number of PCs in
the Silcora case. Such a result implies a lower descriptive power
associated with the chosen PC plot which, however, can be raised
by inspecting other dimensions of the PC space.51

The PC plot of Figure 4A allows us to assume that only PC1
has some tendency to discriminate between berries belonging to
T-WT and transgenic genotypes, although this tendency is not as
clear as in the other cultivar. Indeed, Student's t test gives results
with higher p values (4.4� 10�5 vs 2.2� 10�16 or 2.6� 10�12)
(Table 1).
Also, for the PC space calculated on the Thompson subset, the

PC loadings give the weight of each bin in determining the extent
of the separation along each PC dimension. In this way, black
bins labeled 1 and 2 (both in the aromatic region) are responsible
for the poor separation along PC1, so that a higher area is

associated with the transgenic variant. This finding is also
confirmed by integrating areas of such bins (Figure 5). The
group of black bins labeled 3 exerts a slight decrease of its area,
thus suggesting that the amount of organic acid is lower in the
transgenic line than in its control line, which confirms the results
based on chemical analyses performed by detecting the total

Figure 4. Thompson samples multivariate analysis. (A) Score plot
obtained by application of PCA on mean-centered and scaled spectral
bins recorded on berry extracts of Thompson cultivar. The first two PCs
explain 15% (PC1) and 12% (PC2), respectively, of the total variance.
(B, C) Loading plots for spectral bins, along PC1 and PC2, respectively.
The black bins labeled with numbers are described in the text as
representative of meaningful bins responsible of separation along the
respective PC dimension.
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titrable acidity.42 On the contrary, although black bins labeled 4,
containing sugar signals, have high weight on PC2, their cumu-
lative area shows no meaningful difference when transgenic and
control lines are compared. This is also expected on the basis
of the fact that PC2 is, indeed, not able to discriminate between
the two lines of the Thompson cultivar. Field evaluation of these
two lines showed minor differences in fruit quality, whereas
the effect of the gene was more evident in increasing plant
productivity.35,56 The high similarity of fruit metabolic pattern
between control and transgenic lines of Thompson Seedless can
be considered as a first indication of more substantial equivalence
between the two lines, in comparison with the Silcora cultivar,
which is quite important information for the evaluation protocols
expected by the rules for the release of transgenic plants.
PCA Applied to Both Cultivars, Including Control and

Transgenic Lines. Results from a global PCA including all
samples belonging to both cultivars are shown in Figure 6. The
purpose of this further analysis is not to explore the differences
between the wild genotypes of both cultivars but, rather, to
determine whether the genetic modification shifts the metabolite
profile toward the same direction, independent of the cultivar.
Indeed, the application of PCA to separate cultivars empha-

sizes the metabolic impact of the genetic modification within
each cultivar. However, there is no information about possible
similarities between the metabolic profile changes occurring in
Thompson Seedless with respect to the ones occurring in the
Silcora cultivar. This can be ascribed to the fact that the direction
of each PC in the variance space is just relative to the analyzed set

of spectra. Thus, the inclusion of other samples in the same set
may affect the orientation of PCs in the new variance space.57

When the highest variance in the comprehensive data set is
between the two cultivars, PC1 must align along that variance

Figure 5. Bar plots representing the areas obtained by integrations of
bin groups 1�4, here labeled according to loading plots shown in
Figure 4B,C. Standard errors are also shown as black lines on the top of
each bar.

Figure 6. All grape sample multivariate analysis. (A) Score plot
obtained by application of PCA on mean-centered and scaled spectral
bins recorded on berry extracts of all cultivars and genotypes. The first
two PCs explain 26% (PC1) and 12% (PC2), respectively, of the total
variance. (B, C) Loading plots for spectral bins, along PC1 and PC2,
respectively. The black bins labeled with numbers are described in the
text as representative of meaningful bins responsible of separation along
the respective PC dimension.
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direction, decreasing the effect and the importance of the genetic
modification. For this reason, the extent and the direction, in
terms of metabolite pattern, of the genetic modification should
be evaluated both separately and comprehensively on all con-
sidered cultivars.
The PCA applied to all samples of both cultivars (Figure 6)

points out that GM1 modification, that is, with one gene copy
inserted, shifts the metabolic profile of the Silcora cultivar along
the same direction of the PC score plot as for the Thompson
cultivar, although to a lower extent.
Some further consideration can be extracted from the inspec-

tion of integral areas of selected bin groups (Figure 7). Aromatic
compounds of bin group 1 are present at higher concentrations in
the Silcora control line than in the Thompson control line.
Moreover, all transgenic lines contain higher amounts of aro-
matic compounds belonging to group 1 than their corresponding
WT line, except for GM of the Thompson variety, for which
integrals show comparable amounts. It is intriguing that, in a
previous study, the total amount of polyphenols was found to
be 25% higher in S-GM1 than in its control line, whereas it is
only 9% higher in the T-GM1 cultivar than in its corresponding
control line.42

The opposite trend appears for the organic acids collected in
the group of black bins labeled 2, because transgenic berries
contain lower concentrations than their control counterpart.
Moreover, also when only control lines of both cultivars are
compared, organic acids included in the black bins labeled 2
show an opposite trend to that of aromatic compounds in those
labeled 1. In fact, T-WT berries contain higher amounts of
organic acids than S-WT. Again, the same trend was found in the

chemical determination of total acids, although mostly due to
tartaric acid variations rather than to changes in malic and citric
acid concentrations.42

Interestingly, S-GM2 has decreased amounts of the aromatic
compounds grouped in black bins labeled 3, whereas different
aromatic compounds, grouped in bins 1, were subjected to an
increase consequent to the same type of genetic modification.
According to the present results, it is possible to identify some

NMR spectral regions that contain signals from metabolites that
show statistically significant differences when the genetically
modified lines and their respective control samples are com-
pared. Such differences are mainly found in the aromatic region
containing signals of tryptophan and indole derivatives, for which
the metabolic pathway is affected by the genetic insertion.
Moreover, meaningful variations are also observed in the organic
acid regions, previously found to change their concentration.
The critical role of auxin in plant growth and fruit development
is a well-known issue,58,59 and these results reveal the perspective
offered by the NMR technology in identifying the entity of meta-
bolic impact in specific tissues with modified auxin metabolism.
The chemometric analysis, which themetabonomics approach

is based on, shows that the Silcora grape cultivar, more than the
Thompson one, exerts statistically significant differences of their
metabolic profile, as observed by NMR, when transgenic lines
and control ones are compared.
According to the genetic modification, the results were

supposed to be mainly related to metabolites involved in the
ripening process. It is not the purpose of the present study to
characterize individually the metabolites involved in the genetic
modification. Rather, when substantial equivalence needs to be
evaluated, the present holistic approach eliminates most of the
constraints associated with the chemical analysis, for example, the
quantification of only known components.
The combination of NMR spectroscopy together with un-

supervised data analysis becomes an important tool able to
identify differences in the metabolic profile also without looking
for specific metabolites expected to change.60 Such a nontargeted
approach should be considered as a preliminary step in food
benefit and risk assessment of a new transgenic plant or product,
as previously considered in the identification step of unintended
effects.4

Obviously, in the case of nonequivalence, the identification of
all metabolites affected by the inserted genes must be performed,
by applying both analytical, such as spectroscopic and chromato-
graphic, and supervised statistical methodologies.
In the light of such considerations, the metabonomics ap-

proach applied to food science may result as a further tool in the
hands of scientists that need more and more food descriptors to
be taken under control during the risk assessment strategy.
Moreover, the present approach may be used to define, together
with other statistical and analytical tools, the point at which a
transgenic plant/product is no longer substantially equivalent to
the one that has not been modified, that is, when the metabolic
profile of the modified line is statistically different from that of its
control.
In fact, the two table grape cultivars showed different extents

of metabolic modification, measured as distance in the PC score
plot, when transformed with the same DefH9-iaaM gene, the
level of variation observed between the transgenic lines and
control of Silcora being much higher than that observed in
Thompson Seedless control and transgenic lines. This confirms
the importance of the genetic background in determining the

Figure 7. Bar plots representing the areas obtained by integrations of
bin groups 1�4, here labeled according to loading plots shown in
Figure 6B,C. Standard errors are also shown as black lines on the top of
each bar.
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level of genetic and metabolic variations induced by the inserted
gene.
Because the genetic modification has generated GM grapes

that are statistically nonsubstantially equivalent to their corre-
sponding wild genotype, the next study should characterize the
chemical nature of metabolites undergoing major concentration
changes, to rationalize and, possibly, to understand the main
metabolic pathways being influenced by the genetic modifications.
It is worth remembering that physical�chemical analysis is not

enough to ensure the safety of GM foods; animal and human
feeding tests are also required by European and United States
regulators. In this respect, unsupervised PCA performed on
NMR spectra, or other comprehensive metabolic profiles of
WT and GM derivatives, could assist in selecting samples to be
included in such feeding tests, by picking up those showing the
highest variance between groups, thus potentiating the effective-
ness of such tests.
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